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Abstract
We discuss the mutually opposite procedures of deformations and contractions
of Lie algebras. Our main purpose is to illustrate the fact that, with appropriate
combinations of both procedures, we obtain new Lie algebras. Firstly, we
discuss low-dimensional Lie algebras, and these simple examples illustrate that,
whereas for every contraction there exists a reverse deformation, the converse
is not true in general. We point out that otherwise ordinary members of
parametrized families of Lie algebras are singled out by this irreversibility
of deformations and contractions. Then, we recall that global deformations
of the Witt, Virasoro and affine Kac–Moody algebras allow one to retrieve Lie
algebras of Krichever–Novikov type and show that, in turn, contractions of the
latter lead to new infinite-dimensional Lie algebras.

PACS number: 02.20.Sv

1. Introduction

When understood in a general and rather vague sense, deformations of Lie algebras are
continuous modifications of the structure constants of these Lie algebras, and they occur
in mathematics and in physics under various guises. There exist two main categories of
such modifications of the structure constants: contractions, which typically transform a Lie
algebra into a ‘more Abelian’ Lie algebra, and deformations, which will lead to a Lie algebra
with more intricate Lie brackets. In the literature, physicists have been mostly interested in
contractions, whereas most articles about deformations have appeared in mathematics. Both
concepts have been investigated by researchers with different approaches and different goals.
Therefore, there exists a plethora of definitions for both contractions and deformations. In the
next section, we recall general definitions of the two concepts within the framework of Lie
algebras. Our main objective is to use various examples to illustrate that the combined use
of deformations and contractions may unify a wider variety of algebraic structures and unveil
new Lie algebras.
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One-parameter deformations of arbitrary rings and associative algebras, and their related
cohomology questions, were first investigated by Gerstenhaber [1] and then applied to Lie
algebras by Nijenhuis and Richardson [2]. They turn out to be a particular case of ‘formal’
deformations, the latter being obtained when classical deformations are formal power series of
one or several variables. Formal deformations are characterized by a complete local algebra
base and they describe a local neighbourhood of the given object. This more general set-up for
Lie algebras was introduced by Fialowski [3, 4]. This framework is general enough to describe
all non-equivalent formal deformations. Namely there is a versal object in this category
[4, 5]. ‘Versal’ means that such a deformation induces all other deformations and is unique
at the infinitesimal level. A more general deformation theory is obtained by considering an
arbitrary commutative algebra with unity as the base of deformation. Such deformations are
called ‘global’ and appear in the work of Fialowski and Schlichenmaier [6, 7].

A procedure opposite to deformations, contractions, is important in physics because it
explains, in terms of Lie algebras, why some theories arise as a limit regime of more ‘exact’
theories. Motivated by the need to relate the symmetries underlying Einstein’s mechanics and
Newtonian mechanics, Inönü and Wigner introduced the concept of contraction, which consists
in multiplying the generators of the symmetry by ‘contraction parameters’, such that when
these parameters reach some singularity point, one obtains a different (i.e. non-isomorphic)
Lie algebra with the same dimension [8]. A similar procedure had been mentioned previously
by Segal [9]. The method has been generalized a few years later by Saletan [10]. Nice reviews
can be found in [11]. Contractions were used by Lévy-Leblond to emphasize that the condition
of largely timelike intervals is just as crucial as the infinite velocity of light, in order to contract
the Poincaré algebra to the Galilei algebra [12]. Another physical example is the contraction
of the de Sitter algebras to the Poincaré algebra, in the limit of large (universe) radius. These
examples suggest that deformations are likely to be more useful than contractions in the
investigation of fundamental theories [13].

In the mathematics literature, there are concepts similar to contractions, known as
‘degeneration’, ‘perturbation’ and ‘orbit closure’. Orbit closures arise in many areas of
mathematics where algebraic or topological transformation groups are considered, such as
invariant theory, representation theory, theory of singularities, etc. For algebraic structures on
a fixed finite-dimensional vector space, degeneration means that the orbits under the action of
the general linear group are the isomorphism classes, and so orbit closure coincides with the
closure of these classes.

This paper is organized as follows. General definitions of deformations and contractions
are given in the next section. In section 3, we discuss the three-dimensional complex and real
Lie algebras in order to get new insight about the two concepts with those known examples.
We use the generalized Inönü–Wigner contraction method [14] and the classification of
deformations in [15]. In section 4, we turn to infinite-dimensional Lie algebras. Our main
result therein is that appropriate combinations of deformation and contraction procedures
allow us to construct and classify new Lie algebras in a natural and elegant manner. We
expect these new Lie algebras to be of interest, particularly in conformal field theories, just
like non-semisimple finite-dimensional Lie algebras are important in physics. Other articles
address various aspects of both deformation and contraction methods [16–20].

2. Deformations and contractions of Lie algebras

A nice review of the concepts of deformations and contractions is given in [21]. Consider a
Lie algebra g of dimension N over an arbitrary field k. Hereafter, we are interested in k = R
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and C. Let us denote the basis elements of g by {x1, . . . , xN }, and write the Lie bracket as

[xi, xj ] = Ck
ij xk, (1)

where the coefficients Ck
ij are the structure constants. We denote by LN , or LN(k), the space

of structural tensors of N-dimensional Lie algebras. Then a one-parameter deformation of a
Lie algebra g, whose structure constants belong to LN(k), is a continuous curve over LN(k).
The deformation is said to be (piecewise) smooth, analytic, etc, if the defining curve itself is
(piecewise) smooth, analytic, respectively.

A formal one-parameter deformation is defined by the Lie brackets:

[a, b]t = F0(a, b) + tF1(a, b) + · · · + tmFm(a, b) + · · · (2)

where F0 denotes the original Lie bracket [·,·]. Jacobi identity implies relations between the
tensors Fm. The first such deformation relation is that F1 must be a two-cocycle of g. We
call [·,·]t a first-order, or infinitesimal, deformation if it satisfies the Jacobi identity up to t2.
It follows that first-order deformations correspond to elements of the space of two-cocycles
Z2(g, g). A deformation is called of order n if it is defined modulo tn+1.

Consider now a deformation gt = [·,·]t not as a family of Lie algebras, but as a Lie algebra
over the ring k[t] of formal power series over k. A natural generalization is to allow more
parameters, which amounts to consider k[[t1, . . . , tk]] as the base, or, even more generally,
to take an arbitrary commutative algebra A over k, with unit as the base. Assume that A

admits an augmentation ε : A → k, such that ε is a k-algebra homomorphism and ε(1A) = 1.
The ideal mε := ker(ε) is a maximal ideal of A, and, given a maximal ideal m of A with
A/m ∼= k, the natural quotient map defines an augmentation. If A has a unique maximal ideal,
the deformation with base A is called local. If A is the projective limit of local algebras, the
deformation is called formal.

In general, let us consider a Lie algebra g over the field k, ε a fixed augmentation of the
commutative algebra A, and mε := ker(ε), the associated maximal ideal. We define a global
deformation λ of g with base (A,m) as a Lie A-algebra structure on the tensor product A⊗k g

with bracket [·,·]λ such that

ε ⊗ id : A ⊗ g → k ⊗ g = g

is a Lie algebra homomorphism [4, 5]. It means that, for all a, b ∈ A and x, y ∈ g, we have
the following conditions:

(a) [a ⊗ x, b ⊗ y]λ = (ab ⊗ id)[1 ⊗ x, 1 ⊗ y]λ,
(b) [·,·]λ is skew-symmetric and satisfies the Jacobi identity,
(c) ε ⊗ id([1 ⊗ x, 1 ⊗ y]λ) = 1 ⊗ [x, y].

Condition (a) means that, in order to describe a global deformation, it is sufficient to know
the elements [1 ⊗ x, 1 ⊗ y]λ, for all x, y ∈ g. From condition (c), it follows that the Lie
bracket of these elements has the form

[1 ⊗ x, 1 ⊗ y]λ = 1 ⊗ [x, y] +
∑

i

ai ⊗ zi,

with ai ∈ m and zi ∈ g. The sum given in this expression is a finite sum.
Intuitively, rigidity of a Lie algebra g means that we cannot deform it. Or, given a family

of Lie algebras containing g as the special element g0, any element gt in the family ‘nearby’
will be isomorphic to g0. We call a Lie algebra infinitesimally rigid if every infinitesimal
deformation is equivalent to the trivial one, and formally rigid if every formal deformation
is trivial. For a finite-dimensional Lie algebra g, if the cohomology space vanishes, i.e.
H 2(g, g) = 0, then g is rigid in any sense [1, 2]. Thus, for instance, any finite-dimensional
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semisimple Lie algebra (k = R or C) is rigid. In infinite dimension, the vanishing cohomology
only implies that g is formally rigid [4].

A contraction is, in a sense, opposite to the operation of deformation. The commutation
relations of a contracted Lie algebra, or contraction, g′ of a Lie algebra g, are given by the
limit:

[x, y]′ ≡ lim
ε→ε0

U−1
ε ([Uε(x),Uε(y)], (3)

where Uε ∈ GL(N, k) is a non-singular linear transformation of g, with ε0 being a singularity
point of its inverse U−1

ε . In mathematical terms, the orbits under the action of GL(N, k) are
the Lie algebra isomorphism classes, and a Lie bracket [·,·]′ is a contraction of [·,·] if it is in
the Zariski closure of the orbit of [·,·] [19]. Since the fundamental definitions of deformations
(given in equation (2)) and contractions (equation (3)) are so different, it is not so clear a priori
whether they are opposite concepts.

Throughout the paper, however, we shall utilize the generalized Inönü–Wigner (or Weimar-
Woods) contractions, which are defined by splitting the Lie algebra g into an arbitrary number
of subspaces:

g = g0 + g1 + · · · + gp, (4)

and by taking the matrix Uε of equation (3) as

UWW
ε = ⊕j ε

nj idgj
, ε > 0, nj ∈ R, j = 1, 2, . . . , p, (5)

where p � dim g. The Inönü–Wigner contractions correspond to the particular case p = 1,
with n0 = 0 and n1 = 1 [8]. From equations (1) and (5), and if we denote by gi the subspace
in (4) to which the element xi belongs, then equation (3) becomes

[xi, xj ]′ = lim
ε→0

εni+nj −nkCk
ij xk. (6)

This shows that the exponents in equation (5) must be such that

ni + nj − nk � 0, unless Ck
ij = 0.

Then the structure constants of the contracted algebra g′ are given by

(C ′)kij =
{

Ck
ij , if ni + nj = nk,

0, if ni + nj > nk.

Clearly, two trivial contractions always exist: first, the Abelian Lie algebra, and second, the
original Lie algebra itself, for which the commutation relations are left unchanged. Likewise,
an abelian Lie algebra can be deformed to every Lie algebra of the same dimension.

3. Three-dimensional Lie algebras

In this section, we compare deformations and contractions of complex and real three-
dimensional Lie algebras. Hereafter, the deformations of real three-dimensional Lie
algebras are classified for the first time by using the recent deformation classification of the
corresponding complex Lie algebras [15]. Contractions of low-dimensional real Lie algebras
are discussed in the literature: one, two and three dimensions in [14, 22], and four dimensions
in [23]. In [22, 23], Inönü–Wigner contractions are utilized, whereas in [14], Weimar-Woods
contractions are introduced, and applied to the three-dimensional real Lie algebras. We note
that to each contraction, there exists an opposite deformation, but the converse is not always
true. This irreversibility occurs within families of Lie algebras.
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Table 1. Three-dimensional complex Lie algebras.

C
3 : [xi , xj ] = 0, i, j = 1, 2, 3

n3 (C) : [x1, x2] = x3

r2 (C) ⊕ C : [x1, x2] = x2

r3 (C) : [x1, x2] = x2, [x1, x3] = x2 + x3

r3,λ (C) , (λ ∈ C
∗, |λ| � 1) : [x1, x2] = x2, [x1, x3] = λx3

sl2 (C) : [x1, x2] = x3, [x2, x3] = x1, [x3, x1] = x2

3.1. Complex Lie algebras

In table 1, we list the Lie brackets of the three-dimensional complex Lie algebras. Note that
r2 (C) ⊕ C coincides with r3,λ=0 (C), which explains why λ = 0 is excluded from the family
r3,λ (C) in table 1. We do so a priori just to follow the accepted nomenclature. However, we
shall see that, in the sense of contractions and deformations, r2 (C) ⊕ C behaves just like any
member of the family, so it is more appropriate to include it into the family. The results agree
with the calculations (based on the method of orbit closures) in [24].

To illustrate the procedures, let us briefly discuss the contraction from sl2(C) to r3,−1(C).
We express the Lie brackets of sl2(C) in the Cartan basis:

[h, e] = e, [h, f ] = −f, [e, f ] = 2h.

Then, we may introduce the contraction parameters as follows:

e → εe, f → εf, h → h,

before taking the limit ε → 0. This results in [e, f ] → 0, with [h, e] and [h, f ] unchanged,
i.e. the Lie brackets for r3,−1(C). Now, let us illustrate the reverse deformation with this simple
example. The original Lie brackets of r3,−1(C) are such that, in equation (2), the non-zero
F0’s are F0(h, e) = e and F0(h, f ) = −f . Then, in order to deform it to sl2(C), we may
write equation (2) as

[h, e]t = e + tF1(h, e), [h, f ]t = −f + tF1(h, f ), [e, f ]t = tF1(e, f ),

where

F1(h, e) = 0, F1(h, f ) = 0, F1(e, f ) = 2h,

as suggested clearly by the contraction. The resulting Lie algebra is isomorphic to sl2(C), for
any non-zero t.

The results of contractions and deformations of three-dimensional complex Lie algebras
are displayed in figure 1. The lines and arrows should be interpreted as follows: an arrow
points towards the deformation, whereas a simple line connect Lie algebras related by both
deformation and contraction, with the deformed Lie algebra lying upward. The left-pointing
arrow symbol over r3,λ 	=±1(C) means that it deforms inside the family.

Let us note that a non-trivial contraction always induces a non-trivial (inverse)
deformation. However, the converse is not true: there are deformations which do not admit
an inverse contraction. For instance, one can never have a contraction inside a parametrized
family of Lie algebras, but there is always a deformation inside a family. Also, nothing can
be contracted to the parametrized family, whereas there are many non-trivial deformations in
dimension 3 to the family r3,λ 	=±1(C). Let us emphasize that the irreversibility occurs only
when the family is involved.

The family of Lie algebras r3,λ 	=±1(C) has a non-trivial deformation into itself. Note that
the two Lie algebras r3,1(C) and r3,−1(C) are singled out for two reasons. First, r3,1(C) can be
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←−−−−−−−
r3,λ �=±1(C) sl2(C)

r3(C)

�

r3,−1(C)

�

r3,1(C)
�

n3(C)

Figure 1. Contractions and deformations of the three-dimensional complex Lie algebras.

Table 2. Three-dimensional real Lie algebras.

R
3 : [xi , xj ] = 0, i, j = 1, 2, 3

n3 (R) : [x1, x2] = x3

r3 (R) : [x1, x2] = x2, [x1, x3] = x2 + x3

r3,λ (R) , (λ ∈ R, |λ| < 1) : [x1, x2] = x2, [x1, x3] = λx3

r3,1 (R) : [x1, x2] = x2, [x1, x3] = x3

r3,−1 (R) : [x1, x2] = x2, [x1, x3] = −x3

r′
3,λ (R) , (λ ∈ R

∗) : [x1, x2] = λx2 + x3, [x1, x3] = −x2 + λx3

n2 (R) = r′
3,0 (R) : [x1, x2] = x3, [x1, x3] = −x2

sl2 (R) : [x1, x3] = −2x2, [x1, x2] = x1, [x2, x3] = x3

su2 : [x1, x2] = x3, [x2, x3] = x1, [x3, x1] = x2

r2 (R) ⊕ R : [x1, x2] = x2

deformed into r3(C) whereas r3,λ 	=1(C) cannot, and r3,−1(C) can deform into sl2(C), whereas
r3,λ 	=−1(C) cannot. Second, r3,1(C) is special because it cannot be contracted to n3(C), unlike
r3,λ 	=1(C).

3.2. Real Lie algebras

The Lie brackets of three-dimensional real Lie algebras are given in table 2. Also, we list in
table 3 different notation found in the literature, because we shall present just the results for the
contractions taken from [14, 22]. Note that the Lie algebra r2 (R)⊕R may be included within
the family r3,λ (R) as the particular case λ = 0. However, although it might be tempting
to view n2 (R) likewise, as r′

3,λ=0 (R), we shall see that it is not appropriate, because the
deformation pattern of n2 (R) is different from r′

3,λ (R).
The results obtained by Weimar-Woods [14], which encompass those of Conatser [22], are

summarized in figure 2. The only difference between the two classifications is that Weimar-
Woods obtains the direct contraction from sl2(R) into n3(R), whereas Conatser obtains this
relation with a sequence of contractions, the intermediary step going through n2(R). This is
not at all surprising, since Weimar-Woods utilizes a more general contraction method than
Conatser’s.

We have classified the deformations following the same lines as in [15], using the
corresponding real forms of the complex Lie algebras. They are displayed in figure 2. Let us
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←−−−−−−−
r3,λ �=±1(R) sl2(R) su2

r3(R)

�

r3,−1(R)

�

n2(R) �
←−−−−
r′3,λ(R)

r3,1(R)
�

n3(R)

Figure 2. Contractions and deformations of the three-dimensional real Lie algebras.

Table 3. Three-dimensional real Lie algebras.

Onishchik, Vinberg [21] Patera et al [25] Lévy-Nahas [17] Conatser [22] Weimar-Woods [14]

n3 (R) A3,1 A2 C2 LS

r3 (R) A3,2 A4 C5 LSA

r3,λ (R) , (λ ∈ R
∗, |λ| < 1) Aa

3,5 A5(λ) C4,λ Lλ
SSA−

r3,1 (R) A3,3 = Aa=1
3,5 A3 = A5(1) C4,λ=+1 LA

r3,−1 (R) A3,4 = Aa=−1
3,5 A6 = A5(−1) C4,λ=−1 LSS−

n2 (R) A3,6 = Aa=0
3,7 A7 C6,λ=0 LSS+

r′
3,λ (R) , (λ ∈ R

∗) Aa
3,7 C6,λ Lλ

SSA+

sl2 (R) A3,8 A8 C8 LSSS−
su2 A3,9 A9 C7 LSSS+

r2 (R) ⊕ R Aa=0
3,5 A5(0) C3 Lλ=0

SSA−
R

3 3A1,1 A1 C1

make some general comments. Different real forms of a given complex Lie algebra do not
interact via deformations or contractions because, if they did, they would induce a non-trivial
deformation or contraction at the complex level which is the identity mapping. Also, a subset
of the real forms is formally identical to the corresponding complex forms, so they inherit a
similar pattern for contractions and deformations. As a consequence, we can restrict ourselves
to the contractions and deformations involving the new objects only.

As mentioned above, the Lie algebra n2 (R) acquires a special status, compared to the
other members of the family r′

3,λ (R), with respect to deformations. This is because n2 (R) can
be deformed into su2 and sl2 (R) and no other members of the family can. Therefore, the value
λ = 0 stands out, in a way parallel to the values λ = ±1 in the complex case. Nevertheless,
there exists a natural deformation of n2 (R) into the family. The non-trivial deformed Lie
brackets are the following, expressed as in equation (2):

[x1, x2]t = [x1, x2]0 + tF1(x1, x2), where F1(x1, x2) = x2,

[x1, x3]t = [x1, x3]0 + tF1(x1, x3), where F1(x1, x3) = x3.

It is true in general that any particular member of a family can be deformed into the family.
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4. Infinite-dimensional Lie algebras

In this section, we discuss deformations and contractions of some infinite-dimensional Lie
algebras. The physics literature about applications of infinite-dimensional Lie algebras,
namely to conformal field theory, is enormous. Their interest stems from critical phenomena
in two dimensions [26]. Whereas the Witt and Virasoro algebras describe local invariance of
conformal field theories on the (zero genus) Riemann sphere, the Lie algebras of Krichever–
Novikov type discussed hereafter corresponds to higher genus. The physical interpretation of
the contraction parameters introduced within these Lie algebras remain to be further explored.
The difficulty encountered when deforming the known Lie algebras is that formal deformations
are no longer sufficient to describe general deformations. The examples discussed below are
formally rigid, so that they admit no non-trivial formal deformations. Nevertheless, there exist
very interesting non-trivial global deformations. In the global deformation theory, we no longer
have the tool of computing cohomology in order to get deformations, so the picture is much
more difficult, and there are very few results so far [6, 7]. This is where a combination of the
contractions and deformations proves really fruitful, since it leads to new infinite-dimensional
objects, as we will show hereafter. In a domain where so few objects are known explicitly,
each new object should be of interest both in mathematics and in physics, particularly, in
conformal field theory. The deformations we consider here are over affine varieties, which are
very special global deformations.

4.1. Witt, Virasoro and Krichever–Novikov algebras

First, let us consider the Witt algebra W

[ln, lm] = (m − n)ln+m, n,m ∈ Z.

Its only one-dimensional central extension is the Virasoro algebra V, with bracket operation:

[ln, lm] = (m − n)ln+m + 1
12m(m2 − 1)δn+m,0c, [ln, c] = 0,

where c denotes the central charge.
Krichever and Novikov invented the algebras of Virasoro type in [27]. It was shown

recently that these infinite-dimensional Lie algebras can be interpreted as global deformations
of the Witt or Virasoro algebra [6]. For simplicity, we will consider deformations of the Witt
algebra, but this can be generalized in a natural way to the Virasoro algebra [6]. Despite its
infinitesimal and formal rigidity, which prevents any non-trivial formal deformation, the Witt
algebra W can be non-trivially globally deformed into Krichever–Novikov-type algebras KN

[6]. Such a phenomenon does not appear with Lie algebras of finite dimension.
An example of Krichever–Novikov algebras KN is a two-dimensional family of Lie

algebras parametrized over C
2. The generators are given by the fields:

V2n+1 = (X − e1)
nY

d

dX
,

V2n = 2(X − e1)
n−1(X − e2)(X + e1 + e2)

d

dX
,

which satisfy the following Lie brackets:

[Vn, Vm] =




(m − n)Vn+m, n,m odd,

(m − n)(Vn+m + 3e1Vn+m−2

+ (e1 − e2)(2e1 + e2)Vn+m−4), n,m even,

(m − n)Vn+m + (m − n − 1)3e1Vn+m−2

+ (n − m − 2)(e1 − e2)(2e1 + e2)Vn+m−4, n odd,m even.
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Note that for e1 = 0, e2 = 0, and Y = X, we recover the Witt algebra, and the fields reduce to

ln = Xn+1 d

dX
.

A different KN algebra can be obtained as a one-parameter global deformation, by taking
the following field basis:

V2n ≡ X(X − α)n(X + α)n
d

dX
, V2n+1 ≡ (X − α)n+1(X + α)n+1 d

dX
.

One calculates the Lie brackets:

[Vn, Vm] =



(m − n)Vn+m, n,m odd,

(m − n)(Vn+m + α2Vn+m−2), n,m even,

(m − n)Vn+m + (m − n − 1)α2Vn+m−2, n odd,m even.

(7)

There are many other ways as well, if we specify the base of the deformation being different
affine lines in C

2.
Clearly, they can be contracted back to the Witt algebra. Let us show it on the second

type, equation (7), by utilizing a very elegant and simple Weimar-Woods contraction: if we
define Uε in equations (4) and (5) such that

ln ≡ εnVn, for all n ∈ Z, (8)

then equation (7) becomes

[ln, lm]ε = εn+m[Vn, Vm] =



(m − n)ln+m, n,m odd,

(m − n)(ln+m + ε2α2ln+m−2), n,m even,

(m − n)ln+m + (m − n − 1)ε2α2ln+m−2, n odd,m even.

Then, it is clear that, in the limit where ε approaches zero, we retrieve the commutation relations
of W. Therefore, the operations of deformation and contraction are mutually reversible in this
case.

In addition to retrieving the Witt algebra W, one may contract KN to other, so far
unknown, Lie algebras. Let us discuss an example of such a contraction of KN which
turns out to be a deformation of the respective contraction of W. Moreover, this exotic
contration of KN may be contracted back to the corresponding contraction of W by utilizing
equation (8). In order to do so, let us define Uε in the same style as Weimar-Woods:

Uε ≡ εn0 idg0 + εn1 idg1 , (9)

where 0 and 1 denote the even and odd sectors of the powers of KN, respectively. Then, if we
take the Lie brackets (7) as a specific example, we obtain the modified brackets:

[Vn, Vm]ε =



ε2n1−n0(m − n)Vn+m, n,m odd,

εn0(m − n)(Vn+m + α2Vn+m−2), n,m even,

εn0 [(m − n)Vn+m + (m − n − 1)α2Vn+m−2], n odd,m even.

(10)

Clearly, we must have non-negative values of n0 and 2n1 − n0. We obtain the trivial Abelian
Lie algebra when these expressions take on positive values. Another trivial contraction is
given by n0 = n1 = 0; then it leaves the commutators of equation (7) unchanged.

Two more contractions may be obtained with the splitting of equation (9). One is the
Inönü–Wigner contraction, given by n0 = 0 and n1 = 1 (or any n1 positive); then the
contracted commutation relations read

[Vn, Vm] =



0, n,m odd,

(m − n)(Vn+m + α2Vn+m−2), n,m even,

(m − n)Vn+m + (m − n − 1)α2Vn+m−2, n odd,m even.

(11)
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This defines a new family of infinite-dimensional Lie algebras. In the spirit of sequences of
contractions, if we further contract these Lie algebras with Uε such as defined in equation (8),
then we obtain

[ln, lm] =
{

0, n,m odd,

(m − n)ln+m, n or m even.

This algebra is clearly non-isomorphic to W. Indeed, it is a contraction of W, obtained with
equation (9), utilized this time with 0 being the even sector, and 1 the odd sector of W.

The second contraction of the KN algebra of equation (7) is constructed by choosing
n0 > 0 and 2n1 − n0 = 0 in equation (10):

[Vn, Vm] =



(m − n)Vn+m, n,m odd,

0, n,m even,

0, n odd,m even.

Again, this algebra is not isomorphic to the Witt algebra W.

4.2. Affine Kac–Moody and Krichever–Novikov algebras

In this section, we turn to deformations and contractions which involve Kac–Moody algebras.
More specifically, we shall consider affine, or current, untwisted Kac–Moody algebras,
ĝ = (g ⊗ C[t, t−1]) ⊕ Cc, which are defined in terms of a finite simple complex Lie algebra
g, together with C[t, t−1], the associative algebra of the Laurent polynomials, and the central
extension c:

[a ⊗ tm, b ⊗ tn] = [a, b] ⊗ tm+n + mcB(a, b)δm+n,0. (12)

Either one may contract the finite Lie algebra g first and then affinize the contracted algebra
g, as done in [28], or one may contract the affine algebra. In the next subsection, we shall
discuss the contractions of affine Kac–Moody algebras. Then, in the following subsection, we
further construct new infinite-dimensional Lie algebras by contracting Krichever–Novikov-
type deformations of affine Kac–Moody algebras.

4.2.1. Contractions of affine Kac–Moody algebras. Let us review the results of [28]. To do
so, we use the notation

T m
i ≡ xi ⊗ tm,

together with the Killing form B(xi, xj ) = 1
2δij , so that the Lie brackets (12) read[

T m
i , T n

j

] = Ck
ijT

m+n
k + 1

2 cmδij δm+n,0. (13)

The structure constants are as in equation (1). In order to contract ĝ in the same style as
Inönü–Wigner, first we split the vector space underlying g as in equation (4):

g = g0 + g1,

and we denote the basis elements as

xα ∈ g0, α = 1, . . . , dim g0,

xi ∈ g1, i = 1, . . . , dim g1.

Then equation (6) leads to the following contraction of the corresponding loop algebra:

[xα ⊗ tm, xβ ⊗ tn] = C
γ

αβxγ ⊗ tm+n,

[xα ⊗ tm, xi ⊗ tn] = C
j

αixj ⊗ tm+n,

[xi ⊗ tm, xj ⊗ tn] = 0.
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If the splitting is rather taken over to the affine Lie algebra as follows:

ĝ0 = {
T m

α , c
}
, ĝ1 = {

T m
i

}
,

then we find [28][
T m

α , T n
β

] = C
γ

αβT m+n
γ + 1

2cmδαβδm+n,0,[
T m

α , T n
i

] = C
j

αiT
m+n
j ,[

T m
i , T n

j

] = 0.

Clearly, these contractions generate infinite-dimensional Lie algebras which are not of Kac–
Moody type. Physical applications, particularly in conformal field theory, of such exotic Lie
algebras, certainly deserve further examination.

There is another class of contractions, not discussed in [28]. It is investigated, in the
context of ‘graded contractions’ [29], to contract affine Kac–Moody algebras [30]. We may
begin with a splitting defined by the powers of the Laurent polynomials C[t, t−1]. Let us
consider the two blocks:

ĝ0 = {T 2m
i , c}, ĝ1 = {T 2m+1

i },
which admits a natural Z2 grading. Then equation (6) leads to the contracted Lie brackets:[

T 2m
i , T 2n

j

] = Ck
ijT

2(m+n)
k + cmδij δm+n,0,[

T 2m
i , T 2n+1

j

] = Ck
ijT

2(m+n)+1
k ,[

T 2m+1
i , T 2n+1

j

] = 0.

If we define

T n
i → εnT n

i , c → c,

then equation (13) contracts to the non-extended affine Lie algebra:[
T m

i , T n
j

] = Ck
ijT

m+n
k .

4.2.2. Contractions of Krichever–Novikov-type deformations of affine Kac–Moody algebras.
Examples of global deformations of affine Kac–Moody algebras are also given by KN-type
algebras. However, they do not have such a nice algebraic description as for the Witt and
Virasoro algebra. In [7], it is shown that the trivially extended affine algebras, that is,
equation (12) with k = 0, may be deformed to the following KN-type algebra, parametrized
over the affine plane C

2, or, described algebraically, over the polynomial algebra C[e1, e2]:

[a ⊗ An, b ⊗ Am] =



[a, b] ⊗ An+m, n or m even,

[a, b] ⊗ An+m + 3e1[a, b] ⊗ An+m−2

+ (e1 − e2)(2e1 + e2)[a, b] ⊗ An+m−4, n and m odd,

(14)

where a and b belong to a finite-dimensional complex Lie algebra g. For (e1, e2) = (0, 0), we
simply obtain the original affine algebra.

If we take, as base variety, the affine line e1 = 0, then we get the one-parameter KN Lie
algebras [7]:

[a ⊗ An, b ⊗ Am] =
{

[a, b] ⊗ An+m, n or m even,

[a, b] ⊗ An+m − e[a, b] ⊗ An+m−4, n and m odd.
(15)

First, as we have done in the previous section, let us see that both deformations may
be contracted back to the original Kac–Moody algebra by defining the transformation Uε in
analogy with equation (8):

a ⊗ tn ≡ εna ⊗ An, for all n ∈ Z, (16)
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so that the Lie brackets (14) become

[a ⊗ An, b ⊗ Am]ε =



[a, b] ⊗ An+m, n or m even,

[a, b] ⊗ An+m + 3e1ε
2[a, b] ⊗ An+m−2

+ (e1 − e2)(2e1 + e2)ε
4[a, b] ⊗ An+m−4, n and m odd.

As the contraction parameter ε approaches zero, this leads to equation (12) with k = 0. The
situation is absolutely similar for equation (15).

Now, let us obtain other Lie algebras by following procedures similar to what we have
done for the Witt algebra. First, we split the KN algebra described by equations (14) or (15)
as we have done in equation (9). Then, just to illustrate this contraction with equation (14),
we find

[a ⊗ An, b ⊗ Am]ε =



εn0 [a, b] ⊗ An+m, n or m even,

ε2n1−n0([a, b] ⊗ An+m + 3e1[a, b] ⊗ An+m−2

+ (e1 − e2)(2e1 + e2)[a, b] ⊗ An+m−4), n and m odd.

(17)

The Inönü–Wigner contraction discussed after equation (10), for which n0 = 0 and n1 = 1,
leads to commutation relations analogous to equation (11):

[a ⊗ An, b ⊗ Am]′ =
{

[a, b] ⊗ An+m, n or m even,

0 n and m odd.

If we take n0 positive, and 2n1 − n0 = 0, then equation (17) gives

[a ⊗ An, b ⊗ Am]ε =



0 n or m even,

[a, b] ⊗ An+m + 3e1[a, b] ⊗ An+m−2

+ (e1 − e2)(2e1 + e2)[a, b] ⊗ An+m−4, n and m odd.

Evidently, there are countless possibilities, if we replace equation (16) with a different splitting
of the Lie algebras. We obtain similar results for the Lie algebras of equation (15).

Let us now turn to contractions where the splitting is not done only with respect to the
degrees of the Laurent polynomials, but within the underlying finite Lie algebra g. For the
sake of illustration, let us split the finite underlying Lie algebra g according to the following
Z2-graded structure:

g = g0 + g1, (18)

such that

[g0, g0] ⊆ g0, [g0, g1] ⊆ g1, [g1, g1] ⊆ g0. (19)

With g = sl3(C), for instance, this is satisfied if we choose g0 = {hα, hβ, e±α} and
g1 = {e±β, e±(α+β)}. Next, let us write equation (5) as follows:

Uε ≡ εn00 idg00 + εn01 idg01 + εn10 idg10 + εn11 idg11 ,

where

g00 = g0 ⊗ A2n, g01 = g0 ⊗ A2n+1,

g10 = g1 ⊗ A2n, g11 = g1 ⊗ A2n+1,

where n is an integer. Such a decomposition carries a Z2 ⊗ Z2-graded structure [29]. Since
both indices add up modulo 2, the commutator [gµ, gν] becomes

[gµ, gν]ε = εnµ+nν−nµ+ν gµ+ν,
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where µ and ν are double indices. Then, from equation (6), we see that the exponents
n00, n01, n10, n11 must be such that the following expressions

n00,

n01 + n10 − n11, n10 + n11 − n01, n11 + n01 − n10,

2n01 − n00, 2n10 − n00, 2n11 − n00,

(20)

are non-negative. The second array shows that the exponents n01, n10, n11 are either all
equal to zero or all non-zero. In the latter situation, we may choose n11 = n01 + n10 (for
instance, n01 = 1 = n10, n11 = 2 ), which implies that the other two terms in the second line
(equation above) are positive. Obviously, there are two other possibilities, i.e. with n01 and
n10 respectively replacing n11. When n00 	= 0, then the third line of equation (20) implies that
n01, n10 and n11 must be positive also. To summarize, we have the following possibilities:

1. All the exponents nµ are equal to zero.
2. n00 = 0 and the three others different from zero, with n11 = n01 + n10 (so that n01 > 0

and n10 > 0). There is a total of three such possibilities.
3. n00 	= 0, then the others are also different from zero, with a pattern similar to the previous

case, and for which there are three possibilities.

For the sake of illustration, let us display the effect of such contraction on the KN-type
algebra (15). We use the notation a0 to mean that a ∈ g0 of equation (18) and a1 if a ∈ g1.
Before taking the limit, the Lie brackets (15) become

[a0 ⊗ A2n, b0 ⊗ A2m]ε = εn00 [a0, b0] ⊗ A2(n+m),

[a0 ⊗ A2n, b0 ⊗ A2m+1]ε = εn00 [a0, b0] ⊗ A2(n+m)+1,

[a0 ⊗ A2n, b1 ⊗ A2m]ε = εn00 [a0, b1] ⊗ A2(n+m),

[a0 ⊗ A2n, b1 ⊗ A2m+1]ε = εn00 [a0, b1] ⊗ A2(n+m)+1,

[a0 ⊗ A2n+1, b0 ⊗ A2m+1]ε = ε2n01−n00([a0, b0] ⊗ A2(n+m)+2 − e[a0, b0] ⊗ A2(n+m)−2),

[a0 ⊗ A2n+1, b1 ⊗ A2m]ε = εn01+n10−n11([a0, b1] ⊗ A2(n+m)+1,

[a0 ⊗ A2n+1, b1 ⊗ A2m+1]ε = εn01+n11−n10([a0, b1] ⊗ A2(n+m)+2 − e[a0, b1] ⊗ A2(n+m)−2),

[a1 ⊗ A2n, b1 ⊗ A2m]ε = ε2n10−n00 [a1, b1] ⊗ A2(n+m),

[a1 ⊗ A2n, b1 ⊗ A2m+1]ε = εn01+n11−n01 [a1, b1] ⊗ A2(n+m)+1,

[a1 ⊗ A2n+1, b1 ⊗ A2m+1]ε = ε2n11−n00([a1, b1] ⊗ A2(n+m)+2 − e[a1, b1] ⊗ A2(n+m)−2).

If we choose n00 = 0, n01 = 1 = n10 and n11 = 2, then these relations become, in the limit
where ε approaches zero:

[a0 ⊗ A2n, b0 ⊗ A2m]′ = [a0, b0] ⊗ A2(n+m),

[a0 ⊗ A2n, b0 ⊗ A2m+1]
′ = [a0, b0] ⊗ A2(n+m)+1,

[a0 ⊗ A2n, b1 ⊗ A2m]
′ = [a0, b1] ⊗ A2(n+m),

[a0 ⊗ A2n, b1 ⊗ A2m+1]
′ = [a0, b1] ⊗ A2(n+m)+1,

[a0 ⊗ A2n+1, b0 ⊗ A2m+1]
′ = 0,

[a0 ⊗ A2n+1, b1 ⊗ A2m]
′ = [a0, b1] ⊗ A2(n+m)+1,

[a0 ⊗ A2n+1, b1 ⊗ A2m+1]
′ = 0,

[a1 ⊗ A2n, b1 ⊗ A2m]
′ = 0,

[a1 ⊗ A2n, b1 ⊗ A2m+1]
′ = 0,

[a1 ⊗ A2n+1, b1 ⊗ A2m+1]
′ = 0.

If we consider n00 = 1, n01 = 1 = n11 and n10 = 2, then all the terms above become equal
to 0, except

[a0 ⊗ A2n+1, b1 ⊗ A2m+1]′ = [a0, b1] ⊗ A2(n+m)+2 − e[a0, b1] ⊗ A2(n+m)−2.
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Clearly, these relations describe Lie algebras non-isomorphic to the original Krichever–
Novikov algebra (15).

Many more infinite-dimensional Lie algebras may be obtained if we take other values of
the nµ’s. Evidently, one may begin also with decompositions different from equation (18).
It is interesting to note that when the Laurent polynomials are graded by another group than
Z2, then the behaviour of different terms in the second line of equations (14) and (15) will
be different, and thus the contracted Lie algebras will have a richer structure. A systematic
investigation of such contractions deserves further study.
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